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BoRit Asbestos Superfund Site

Asbestos-containing products factory
Ambler, PA (1881-1987).

White mountain

Common . :

building material Dumping pile of Asbestos-
Containing containing wastes,

asbestos (started in 1930) with total volume

<

1%2 million cubic yards.




BoRit Asbestos Superfund Site
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Transport in porous media
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1) Physical factors : Are particle able to pééz"s:::
through pores? dictated by geometry of
the pores (soil particle size) and flow
condition
2) Chemical factors: Are asbestos particles
attracted to or repulsed from the
medium? dictated by surface properties
and solution chemistry (sand, gravel, clay, etc.)
3) Colloid-facilitated transport mechanism:
organic carbon can facilitate/trigger the
mobility

Asbestos
Particles/fibers

Soil particles




Challenges in laboratory

Main obstacle:

Pore scale visualization of the transport
mechanisms is not possible because we cannot see
what is happening in soil (black-box).

Limited observation

Translucent Ottawa sand  Optical microscope




Novel flowcell & multiscale observation
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Flowcell setup:
A refractive indexed matched
porous medium
(transparent) with density,
surface charge and cation
exchange capacity
comparable to soils

48 mm

Scanning 12345678 9
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Flowcell with In situ Optical SEM & EXDS

transparent soil microscopy




Novel flowcell & multiscale observation

Flowcell with transparent soil (refractive indexed matched)
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Dimension: 20 mm x 48 mm
Duration: 39 min
water flow velocity: 0.7 cm/min




Novel flowcell & multiscale observation
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Novel flowcell & multiscale visualization

Multiscale observation:




Mobility of asbestos in porous media
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However, the addition of
dissolved/particulate organic
carbon resulted in asbestos
breakthrough

Inflow asbestos outflow asbestos
concentration (C,) concentration (C)
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Microfluidic device and multiscale observation

Microfluidic cell setup:

Deposit of chrysotile asbestos on a silica glass coverslip subject to flow to isolate the
chemical factors (solution chemistry, colloid-facilitated transport)

Flow dlrectlon =

Asbestos
PDMS cell with a rectangular deposut
channel (100 um x 2 mm)
\ |crofluidic
device

Microscope
objective
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Microfluidic device & multiscale observation

Attachment of asbestos fibers to silica substrate

Flow
direction
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Microfluidic device and multiscale observation

Attachment of mobile organic particles to immobile asbestos
fibers
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Microfluidic device and multiscale observation

Mobilization of asbestos fibers by attaching to organic particles
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Colloid-facilitated transport mechanism

Surface charge properties

A Chrysotile Asbestos ¢ Transparent grains

¢ Quartz Sand o Silica glass Asbestos
¢ Organic carbon Particles/fibers
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Zeta potential (mv)

Colloid-facilitated transport mechanism

Surface charge properties
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Addition of small quantity of dissolved organic
carbon will reverse the surface charge of
asbestos particles
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Conclusions and outlook:

U Pore-scale visualization of transport mechanism in colloid and
contaminant transport in porous media

O Effect of dissolved/particulate organic carbon as a colloid-
facilitated transport mechanism that triggers the mobility of
asbestos particles

O This technique provides implications towards a body-on-a-chip
concept to study the mobility of asbestos particles in the human
body
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Thank you for your attention!
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