

Direct observation and determination of the mechanisms governing mobility of asbestos in porous media

<u>Ali Seiphoori</u> and Douglas J. Jerolmack Department of Earth & Environmental Science University of Pennsylvania (Penn)

BoRit Asbestos Superfund Site

Asbestos-containing products factory Ambler, PA (1881-1987).

White mountain

Common building material Containing asbestos

Dumping pile of Asbestoscontaining wastes, (started in 1930) with total volume 1½ million cubic yards.

2

BoRit Asbestos Superfund Site

Cap the site with soils/vegetation (mesh and geotextiles)

BoRit Asbestos Superfund Site

Cap the site with soils/vegetation (mesh and geotextiles)

Transport in porous media

Main question:

How far the Asbestos particles migrate and what are the processes that dictate their mobility?

Dominating factors:

- Physical factors : Are particle able to pass through pores? dictated by geometry of the pores (soil particle size) and flow condition
- 2) Chemical factors: Are asbestos particles attracted to or repulsed from the medium? dictated by <u>surface properties</u> and <u>solution chemistry</u>
- **3)** Colloid-facilitated transport mechanism: organic carbon can facilitate/trigger the mobility

Challenges in laboratory

Main obstacle:

Pore scale visualization of the transport mechanisms is not possible because we cannot see what is happening in soil (black-box).

Translucent Ottawa sand

Limited observation

Novel flowcell & multiscale observation

Flowcell setup:

Scanning

A refractive indexed matched porous medium (transparent) with density, surface charge and cation exchange capacity comparable to soils

Experimental setup:

48 mm

3 4 5 6 7 8 9

20 mm

Flowcell with transparent soil

In situ Optical microscopy

SEM & EXDS

Novel flowcell & multiscale observation

Flowcell with transparent soil (refractive indexed matched)

Dimension: 20 mm x 48 mm Duration: 39 min water flow velocity: 0.7 cm/min

Novel flowcell & multiscale observation

Novel flowcell & multiscale visualization

Multiscale observation:

Mobility of asbestos in porous media

- Similar trends were obtained using sand flowcell
- Compatible with larger scale sand column experiments reported by Mohanty et al., (2016) and Gonneau et al., (2017)

However, the addition of dissolved/particulate organic carbon resulted in asbestos breakthrough

Inflow asbestos concentration (C_0)

outflow asbestos concentration (C)

Microfluidic device and multiscale observation

Microfluidic cell setup:

Deposit of chrysotile asbestos on a silica glass coverslip subject to flow to isolate the chemical factors (solution chemistry, colloid-facilitated transport)

Microfluidic device & multiscale observation

Attachment of asbestos fibers to silica substrate

Microfluidic device and multiscale observation

Attachment of mobile organic particles to immobile asbestos fibers

Microfluidic device and multiscale observation

Mobilization of asbestos fibers by attaching to organic particles

Colloid-facilitated transport mechanism

Surface charge properties

Colloid-facilitated transport mechanism

Surface charge properties

Addition of small quantity of dissolved organic carbon will reverse the surface charge of asbestos particles

Conclusions and outlook:

- Pore-scale visualization of transport mechanism in colloid and contaminant transport in porous media
- Effect of dissolved/particulate organic carbon as a colloidfacilitated transport mechanism that triggers the mobility of asbestos particles
- This technique provides implications towards a *body-on-a-chip* concept to study the mobility of asbestos particles in the human body

body-on-a-chip

Thank you for your attention!